M1.(a) all points correct
± 1 small square
allow 1 mark for 6 or 7 plots

Year	Percentage (\%) of bottles made from other materials
1975	5
1980	10
1985	22
1990	42
1995	70
2000	72
2005	90
2010	95

(b) Level $\mathbf{3}$ (5-6 marks):

A detailed and coherent argument is provided which considers a range of issues and comes to a conclusion consistent with the reasoning.

Level 2 (3-4 marks):

An attempt to describe the advantages and disadvantages of the production and uses is made, which comes to a conclusion. The logic may be inconsistent at times but builds towards a coherent argument.

Level 1 (1-2 marks):
Simple statements made. The logic may be unclear and the conclusion, if present, may not be consistent with the reasoning.

0 marks:

No relevant content.

Indicative content

- glass -2 stages in production of soda-lime glass
- glass - second stage, heating sand, limestone and sodium carbonate
- HDPE - 3 stages in production
- HDPE - second stage, cracking of naphtha to obtain ethene
- HDPE - third stage, polymerisation of ethene
- fewer stages in glass production, may be quicker
- higher temperature in glass manufacture, therefore maybe higher energy requirement
- glass bottle can be reused
- consideration of collection / cleaning costs to reuse glass bottles
- other glass products can be made from recycled glass
- plastic has greater range of sizes
- both produced from limited raw materials
- higher percentage recycled materials in glass conserves raw materials This indicative content is not exhaustive, other creditworthy responses should be awarded marks as appropriate.

M2.(a) giant structure / lattice / layers / close packed
first 3 marks can be obtained from a suitably labelled diagram incorrect structure or bonding or particle $=\max 3$
made up of atoms / positive ions
with delocalized / free electrons
so electrons can move / flow through the metal
accept so electrons can carry charge through the metal
accept so electrons can form a current
(b) an alloy (is a metal which) has different types / sizes of atoms

> accept converse for pure metal throughout
> both marks can be obtained from suitable diagrams
> allow made of different metals
> allow mixture of metals / atoms / elements
> ignore particles
> ignore properties
> do not accept compound
alloy has distorted layers
allow layers are unable to slide
(c) (i) can return to its original shape
accept shape memory alloy accept smart alloy
ignore other properties
(ii) (pure copper is too) soft

> accept converse
accept malleable or bends
accept copper is running out
ignore references to strength and weakness
(iii) aluminium oxide
accept alumina
accept $\mathrm{Al}_{2} \mathrm{O}_{3}$
ignore bauxite / aluminium ore
(iv) any one from:

- different conditions
- different catalyst
- different pressure
allow different concentration
- different temperature.
do not accept different monomers
(d) any two from:
- accurate
- sensitive
- rapid
- small sample.
both needed for 1 mark

M3.(a) (Chromium =) 20

> in correct order

```
(Nickel =) 8
accept Chromium \(=8\) and Nickel \(=20\) for 1 mark
```

(b) (i) (because iron is made up of only) one type of atom
(ii) not strong
allow too soft or too flexible accept it rusts / corrodes or that it could wear away accept could change shape / bend accept layers / atoms could slide (over each other)
(iii) structure is different / distorted / disrupted accept not in layers or not regular
so it is difficult for layers / atoms / particles to slip / slide (over each other) accept layers cannot slip / slide

M4.(a) (alloy) atoms / ions / particles not in layers accept layers are distorted accept different (size) particles / atoms
so, (alloy) layers / atoms / ions / particles can't slide
if no other mark awarded allow (an alloy) is a mixture of metals for 1 mark
(b) diamonds have a giant covalent structure
diamonds have strong bonds between carbon atoms
(c) (i) a compound
(ii) CH_{4}
(iii) covalent
(d) methane has a low boiling point or boiling point less than $20^{\circ} \mathrm{C}$ molecules
because it has small molecules
accept it has forces between molecules

M5. (a) 2,4
(b) (electron) 79
neutron

> allow phonetic spelling

118
(c) (i) 16 and 9
in this order
(ii) any two from:
ignore reasons about colour / lustre / corrosion / rarity

- (100% / pure) gold is soft
allow layers can slide in pure gold
- (alloyed) to make the metal hard(er)
ignore just 'the ring is an alloy' allow (alloyed) to stop the layers sliding allow (alloyed) to make the metal strong
- gold is expensive or alloy is less expensive

M6.
(a) 2.5
correct answer with or without working gains $\mathbf{2}$ marks if answer incorrect 2.6 / 2.625 / 2.62 / 2.63 or recognise 3.0 as anomalous gains 1 mark accept answer in table ignore units
(b) as the percentage of cement increases the mass needed to break the sleeper increases
allow 50% cement is the strongest or 30% sand is the strongest or the highest amount of cement is the strongest
or
as the percentage of sand increases the mass needed to break the sleeper decreases
(c) (i) any two from:

- availability of materials
- cost (of materials)
- time needed (for the concrete mixture) to set/harden
- compression strength (of the concrete)
accept weight of the train
- testing full size (concrete railway sleepers)
accept any test on full size sleepers
accept 'how well it would last / weather'
(ii) any four from:
maximum of $\mathbf{3}$ marks if no comparison made
ignore yes or no
negative concrete:
allow converse statements for wood
- more fossil fuel / energy / heat (needed to produce cement / concrete)
- cement / concrete resources / limestone not renewable whereas wood is renewable
- quarrying limestone destroys landscapes / habitats whereas growing wood improves landscapes / habitats
allow quarrying causes noise pollution / dust / etc.
- making cement / concrete releases carbon dioxide / greenhouse gases whereas growing wood absorbs carbon dioxide / greenhouse gases / is carbon neutral
allow making cement / concrete causes global warming / climate change whereas growing wood reduces global warming / climate change ignore loss of trees / deforestation (and resultant effects such as an increase in CO_{2})
positive concrete:
- (less resources are needed because) cement / concrete sleepers last longer or wood rots / needs replacing ignore strength / ease of breaking ignore weathering / effects of acid rain

